13. SEVERE WEATHER

Reading Assignment:

• A&B: Ch. 11, 12

Introduction:

Concepts:

Scale, Motion, Thunder and Lightning, Latent heat of vaporization, Spatial and temporal variability, Atmospheric motion, Development and decay, Law of conservation of angular momentum, Formation and decay, Sources of energy, Structure - horizontal and vertical.

Severe thunderstorms, Tornadoes, Hurricanes, etc.

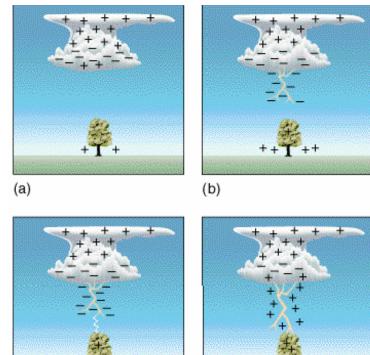
 Thunderstorms 	Each have things in common
o Tornadoes	but there are differences
o Hurricanes	

Scale

	Diameter	
Mid latitude	1600 km	
cyclone	+	
Hurricanes	600 km	Smaller & more intense
Tornado	0.25 km	than a mid-latitude
		cyclone

Tornado - does not show up on a weather map

G109 13. Severe Weather


Motion

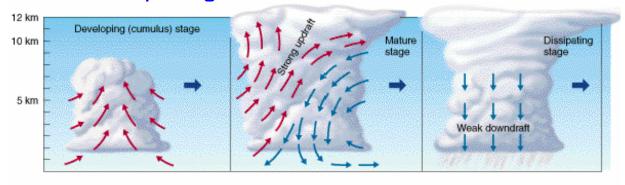
Mid latitude	Inward, spiral
cyclone	
Hurricanes	Inward, spiral
Tornado	Inward, spiral
Thunderstorms	Strong upward & downward motion
	Very variable, gusty winds

1. Thunderstorms

- Unlike hurricanes and tornadoes
 - Different air motion
 - o Can form:
 - on their 'own'
 - in conjunction with cyclones
 - Frequently form along the cold front of a mid-latitude cyclone
- Rare occasions tornado may descend from thunderstorm - cumulonimbus tower
- Hurricanes generate widespread thunderstorm activity
- Thunder and lightning
 - o "Thunderstorm" thunder has to be heard
 - Thunder is produced by lightning therefore lightning also present
 - During the formation of large cumulonimbus cloud separation of charge occurs

- Part of the cloud has an excessive negative charge and another part excessive positive charge
- Lightning attempt to equalize these electrical differences

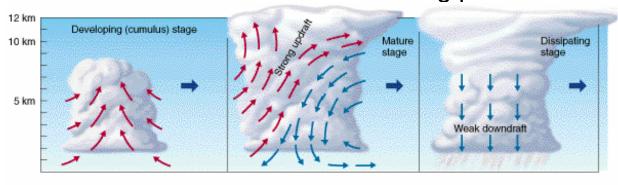
- Negative flow of current from region of excess negative to region of excess positive (or vice versa)
- Air is a poor conductor electrical potential (charge differences) must be very high before lightining will occur
- Electrical discharge of lightning heats the air


and causes it to expand explosively - expansion produces sound waves - hear thunder

- Associated with cumulonimbus clouds
 - Generate heavy rainfall, thunder, lightning, occasional hail
- Require warm moist air which when lifted will release sufficient latent heat of vaporization that it will provide buoyancy necessary to maintain its upward flight

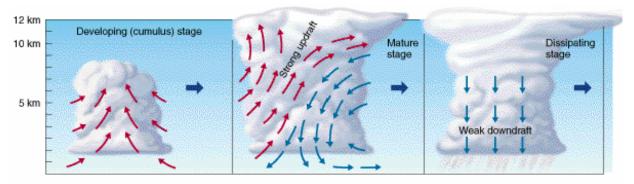
- Instability and buoyancy triggered by a number of processes
 - enhanced by high surface T
 - most common in late afternoon and early evening

Stages of development


- Cumulus
- Mature
- Dissipating

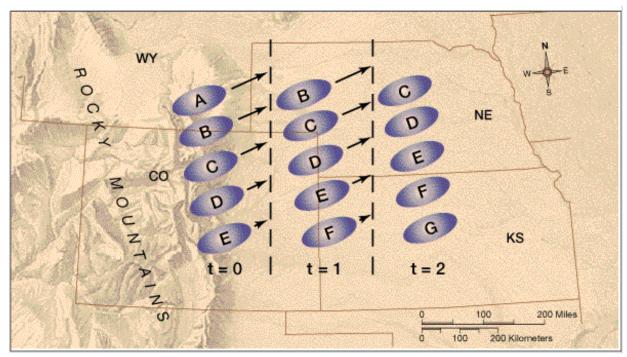
Cumulus (developing)

- Unstable air begins to rise
- Need continuous warm moist air
- Dominated by updrafts may reach speeds > 160 km h⁻¹
- Development of cumulus clouds
- Once cloud passes freezing level Bergeron process—Ice crystals begin to form
 - Usually produces precipitation within an hour
 - Accumulation of precipitation in the cloud becomes too great for the cloud to support


- Falling precipitation causes drag on the air - downdrafts
- Aided by: influx of cool dry air surrounding the cloud - entrainment
 - Intensifies the downdraft because the air is cool
 - Causing falling precipitation to evaporate which is a cooling process
 - Downdraft cooling process

Mature Stage

- When the downdraft leaves the bottom of the cloud -- precipitation is released
- At the surface cool down draft spreads laterally felt before precipitation reaches the ground
- At this stage:
 - updrafts (still enlarging the size of the cloud)
 - downdrafts co-exist side by side
- When cloud grows to the top of the unstable region - often located at the base of the warmer stratosphere - updrafts spread laterally - anvil top
 - Generally ice crystal laden cirrus
- Most active stage of the T/storm
 - Gusty winds


- Heavy precipitation
- Hail sometimes

Dissipating stage

- Downdrafts dominate throughout cloud
- Cooling effect of precipitation and influx of colder air end of T/storm
 - Without supply of moisture the cloud soon evaporates
- Single cumulonimbus cell within a T/storm complex has a life of 1-2 h
- As storm moves to fresh supplies of warm water laden air -- generate new cells

G109 13. Severe Weather

Squal Line Thunderstorm

Thunderstorm types

- 1) Isolated produced with a warm humid air mass
- 2) Severe produced by forceful uplifting along a cold front

Isolated Air mass T/storms

- o generally occur in warm moist mT air
- most of the moisture, lower portion, can become unstable when lifted
- spring & summer warmed sufficiently from below
- o air mass T/storms most frequent
- strong preference for mid-afternoon when surface T are highest
- some after sunset: growth of immature cells restimulated by cloud top cooling

Severe T/storms

- frequently form along or ahead of a cold front in the wave cyclone
- Cold air advances into a region of warm air
- Warm air less dense displaced upwards
 - If rising air sufficiently moist, the mechanical lifting condensation release of latent heat vertical cloud growth T/storm development begins
 - Sharp T contrast sharp pressure difference
- Formation of a severe T/storm that will produce tornadoes
 - presence of an inversion layer a few km above the surface
 - inversion prevents mixing of warm humid air in the lower troposphere with cold dry air above
 - surface heating continues to increase T and moisture content of the layer of the air trapped below the inversion
 - eventually the inversion is locally eroded by strong mixing from below - unstable air "erupts" explosively at these sites
- Some severe T/storms may occur 300 km ahead of the CF - Squall line